Physics 3A: Physics for the Life Sciences Chapter 2: Forces

Laszlo Bardoczi

What Causes Motion?

Everyday experience suggests motion stops without continuous pushing — but that's due to **friction**.

Galileo's insight: In the absence of friction, an object in motion continues moving forever in a straight line.

Experiments:

On smooth snow \rightarrow sled stops quickly.

On slick ice \rightarrow slides farther.

On frictionless surface \rightarrow would never stop.

Newton's First Law (Law of Inertia):

An object at rest stays at rest, and an object in motion stays in motion unless acted upon by a

No force is required to maintain motion — only to change it.

Inertia: The resistance of an object to changes in its state of motion.

Force - Properties

Newton's key insight: No cause is needed to keep an object moving - only to **change** its motion.

Definition: A force is a push or pull that acts on an object and can change its motion.

Symbol: \vec{F}

Magnitude: $F = |\vec{F}|$

Essential properties:

A force acts on an object - it cannot exist in isolation.

Every force has an agent - something that causes it (hand, wall, Earth, etc.).

A force is a vector: it has both magnitude and direction.

Two main types of forces:

Contact forces: arise from physical touch

e.g., friction, tension, normal force, applied push.

Long-range forces: act without contact

e.g., gravity, electric, magnetic forces.

Force Vectors

In the **particle model**, an object is treated as a point, and each force is drawn as a **vector** acting on that point.

How to draw a force vector:

Represent the object by a small dot (the "particle").

Draw an arrow (vector) starting at the dot.

The arrow's direction shows which way the force acts.

The arrow's length shows the relative strength (magnitude) of the force.

Important: The **tail** of each force vector is placed on the particle (object). Moving a vector parallel to itself does **not change** the force.

Examples:

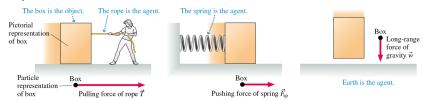


Figure: Forces can push or pull objects through contact or at a distance.

Vector Components and Vector Addition

A vector can be expressed as the sum of its **components** along the x- and y-axes:

$$\vec{A} = A_{x}\hat{i} + A_{y}\hat{j}$$

where

$$A_x = A\cos\theta, \qquad A_y = A\sin\theta$$

The magnitude and direction of the vector can be found from its components:

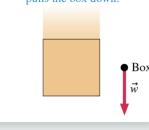
$$A = \sqrt{A_x^2 + A_y^2}, \qquad \tan \theta = \frac{A_y}{A_x}$$

To add vectors, add their components:

$$\vec{R} = \vec{A} + \vec{B} = (A_x, A_y) + (B_x, B_y) = (A_x + B_x, A_y + B_y)$$

Then find the resultant's magnitude and direction:

$$R = \sqrt{R_{\rm x}^2 + R_{\rm y}^2}, \qquad an heta_R = rac{R_{
m y}}{R_{
m x}}$$

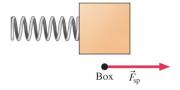

Catalogue of Forces - Weight

Weight Force (\vec{w}) : Long-range gravitational pull of Earth on an object.

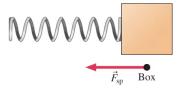
$$\vec{F}_g = m\vec{g}$$

Direction: vertically downward.

The weight force pulls the box down.


Catalogue of Forces - Spring

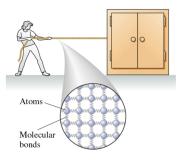
Spring Force $(\vec{F_s})$: Pushes when compressed, pulls when stretched.


$$\vec{F}_s = -k \, \Delta \vec{x}$$

Acts along the spring's axis (Hooke's Law).

(a) A compressed spring exerts a pushing force on an object.

(b) A stretched spring exerts a pulling force on an object.

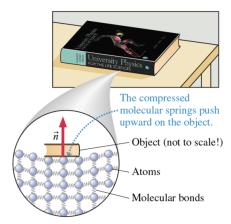


Catalogue of Forces - Tension

Tension Force (\vec{T}) : Pulling force exerted by a rope or string.

 $|\vec{\mathcal{T}}| = \text{constant along the rope}$

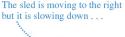
Direction: along the rope, away from the object.

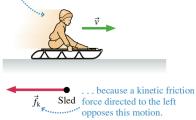


Catalogue of Forces - Normal

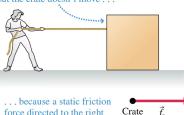
Normal Force (\vec{N}) : Exerted by a surface, perpendicular to it.

$$|\vec{N}| = mg \cos \theta$$


Balances the perpendicular component of weight.



Catalogue of Forces - Friction


Friction Force (\vec{f}) : Opposes sliding or intended motion along a surface.

$$f_s \leq \mu_s N$$
 (static) $f_k = \mu_k N$ (kinetic)

The woman is pulling to the left, but the crate doesn't move . . .

force directed to the right prevents this motion.

Why $\mu_{\rm s} > \mu_{\rm k}$? The Static Advantage

The analogy: climbing vs. sliding

The difference arises from how surfaces interact at the microscopic level.

Static Friction $(f_{s,max})$:

Micro-Interlocking: Tiny peaks (asperities) on both surfaces have time to fully settle into each other's valleys.

Molecular Adhesion: High contact pressure allows momentary molecular bonds (sometimes called "cold welding") to form.

Challenge: A greater force is needed to **break** these settled-in physical and chemical connections

Kinetic Friction (f_k):

Constant Motion: Surfaces are continuously sliding past each other.

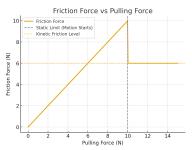
Reduced Contact: Peaks only momentarily graze or skip over each other. There is insufficient time for deep interlocking or strong molecular bonds to form.

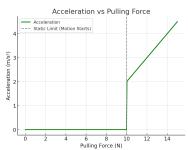
Result: The resistance to motion drops once the initial bonds are broken.

Static and Kinetic Friction: Force and Acceleration

When an object is at rest, the static friction force balances the applied force up to a limit:

$$F_{
m friction} = F_{
m pull}, \quad {
m as \ long \ as} \ F_{
m pull} < F_{
m static,max}$$


Once motion starts, the friction drops to the smaller, constant kinetic friction:

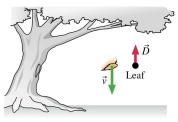

$$F_{\text{friction}} = F_{\text{kinetic}}$$

The acceleration is then determined by Newton's Second Law:

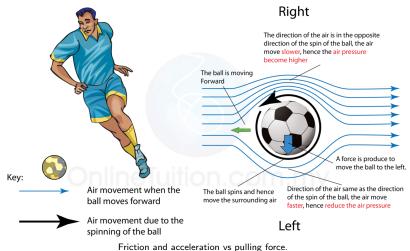
$$a = \frac{F_{\text{pull}} - F_{\text{friction}}}{m}$$

As a result: Acceleration is zero until motion begins. After motion starts, acceleration increases linearly with pulling force, starting with an offset.

Friction and acceleration vs pulling force > < (7) > < (2) > < (3) > < (3) > < (4) > < (4) > < (4) > < (5) > < (4) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > < (5) > <


Catalogue of Forces - Drag

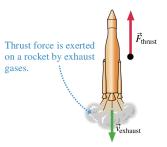
Drag Force (\vec{D}) : Resistive force from a fluid (air or water).


$$\vec{D} = -\frac{1}{2} C_d \, \rho A v^2 \, \hat{v}$$

Opposes motion, increases rapidly with speed.

Air resistance is a significant force on falling leaves. It points opposite the direction of motion.

Soccer Ball Physics - How Drag Bends the Trajectory of a Spinning Ball

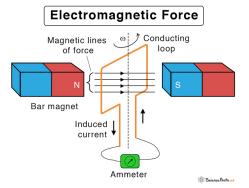


Catalogue of Forces - Thrust

Thrust Force $(\vec{F}_{\text{thrust}})$: Generated by expelling gas or fluid backward.

$$ec{F}_{\mathsf{thrust}} = \dot{m}\, ec{v}_{\mathsf{exhaust}}$$

Pushes the engine forward.


Catalogue of Forces - Electro-Magnetic - P3C Teaser (Not Needed For P3A)

Electric and Magnetic Forces: Long-range forces acting on charged particles.

$$ec{F} = q(ec{E} + ec{v} imes ec{B})$$

Govern all atomic and molecular interactions.

Long-range forces act through fields rather than contact.

The Unit of Force

From Newton's second law:

$$\vec{F}_{\mathsf{net}} = m\vec{a}$$

The unit of force is the product of mass and acceleration:

$$[F] = kg \cdot \frac{m}{s^2}$$

This unit is called the **newton (N)**:

$$1 \text{ N} = 1 \frac{\text{kg} \cdot \text{m}}{\text{s}^2}$$

Typical magnitudes of forces in everyday life:

Force	Magnitude (N)
Weight of a U.S. nickel	0.05
Weight of $\frac{1}{4}$ cup of sugar	0.5
Weight of a 1 lb object	5
Weight of a house cat	50
Weight of a 110 lb person	500
Propulsion force of a car	5,000
Thrust of a small jet engine	50,000
Pulling force of a locomotive	500,000

4 □ > 4 □ > 4 □ > 4 □ > 4 □ > □

Newton's Second Law (Concept)

A force causes an object to accelerate. The acceleration \vec{a} is:

Directly proportional to the net force \vec{F}_{net} . Inversely proportional to the inertial mass m.

$$(m = F_g/g)$$

For a single force:

$$\vec{a} = \frac{\vec{F}}{m}$$

The acceleration points in the same direction as the force.

Note: much after Newton's time it was shown experimentally that the inertial mass (m = F/a) is equal to the gravitating mass to a very high precision.

The Principle of Superposition

For multiple forces acting together:

$$\vec{a} = \frac{\vec{F}_{\text{net}}}{m}$$

where

$$\vec{F}_{net} = \vec{F_1} + \vec{F_2} + \vec{F_3} + \dots$$

The net force is the vector sum of all forces on the object. Also called: principle of superposition.

The acceleration vector \vec{a} points in the same direction as \vec{F}_{net} .

Figure 4.20 Forces on a bungee jumper.

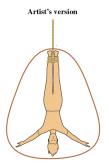


Figure 4.20 Forces on a bungee jumper.

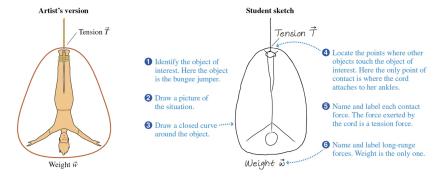


Figure 4.21 Forces on a skier.

Figure 4.21 Forces on a skier.

- Identify the object of interest. Here the object is the skier.
 Draw a picture of the situation.
 Draw a closed curve around the object.
 Weight w
- 4 Locate the points where other objects touch the object of interest. Here the rope and the ground touch the skier.
- S Name and label each contact force. The rope exerts a tension force and the ground exerts both a normal and a kinetic friction force.
- Name and label long-range forces. Weight is the only one.