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Connecting Position & Velocity (At Zero Acceleration)

When acceleration is zero, velocity is constant and position changes at a constant rate:

v =
∆x

∆t
=

x(t)− x(t◦)

t − t◦
−→ x(t) = x(t◦) + v(t − t◦) ⇒ x(t) = x0 + vt

The slope of the x(t) vs. t graph gives v0: A steeper slope means faster motion.

The area under the v(t) vs. t graph gives the displacement: here the area is a rectangle
with height v and width t: ∆x = vt

Example: You walk down the train platform at a steady pace. The slope of your position
graph is constant, and the velocity graph’s rectangular area gives how far you walked.
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Connecting Position, Velocity, and Constant Acceleration

Definition of acceleration, and express of velocity at time t from acceleration:

a =
∆v

∆t
=

v(t)− v(t◦)

t − t◦
−→ v(t) = v(t◦) + a(t − t◦) ⇒ v(t) = v0 + at

Velocity changes linearly with time. Equation simplifies when choosing t◦ = 0s.

v(t) = v0 + at

Consider this example: you are standing at the train station, your friend is walking through the
train looking for an empty cabin, while the train is taking off (accelerating).

v0 −→ velocity of your friend (horizontal dashed line)
at −→ velocity of the train
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Connecting Position, Velocity, and Constant Acceleration

When a = 0, we have: x(t) = x0 + v0t.

When a ̸= 0, the position is a quadratic function of time x(t) = x0 + v0t +
1

2
at2

The meaning of each term:

x0 −→ initial position (just a constant)
v0t −→ distance travelled due to initial velocity (area of a rectangle on v(t) graph)
1
2
at2 −→ distance travelled due to acceleration (area of a triangle on v(t) graph)

The area under the v(t) vs. t graph gives ∆x .
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Recall: Distance with Initial Velocity + Constant Acceleration Later On

If acceleration changes over time, brake the velocity graph into segments and add up the areas:
First part (orange): ∆x = v1∆t1 (time goes from 0 s to 4 s)
Second part(green) ∆x = v1∆t2 +

1
2
a∆t22 (time goes from 4 s to 8 s)
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Position and Velocity as Integrals

If the acceleration is time-dependent, the segments of the velocity curve are not straight lines,
hence you can’t calculate the area under the v(t) graph by simple triangles and rectangles.
The area will have to be calculated with integrals:

Position is the integral of velocity (since it’s the area under the velocity curve):

x(t) =

∫
v(t) dt

Velocity is the integral of acceleration (since it’s the area under the acceleration curve):

v(t) =

∫
a(t) dt
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Velocity and Acceleration as Derivatives

Similarly, the slope won’t be simply v = ∆x/∆t and a = ∆v/∆t but instead we need
differentials:

Velocity is the derivative of position:

v(t) =
dx

dt

Acceleration is the derivative of velocity:

a(t) =
dv

dt
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Rules of Differentiation for Polynomials

For a general polynomial function:

f (t) = a0t
0 + a1t

1 + a2t
2 + a3t

3 + · · ·+ ant
n =

∑
i

ai t
i

The derivative (rate of change) is obtained by multiplying by the exponent and reducing its
power by one:

derivative of a single polynomial term:
d

dt
[tn] = ntn−1

the full polynomial: ⇒ f ′(t) = a1 + 2a2t + 3a3t
2 + · · ·+ nant

n−1

Laszlo Bardoczi Physics 3A: Physics for the Life Sciences 8 / 22



Examples of Differentiating Polynomial Functions

Example 1: Second-Order Polynomial

f (t) = 4t2 + 3t + 2

df

dt
= 8t + 3

The derivative of t2 is 2t, and the derivative of t is 1.
Constant terms disappear when differentiating.
Geometrically: the slope of the parabola f (t) changes linearly with t.
E.g. if f(t) is the displacement, then the velocity at t = 2s is v(t) = 19m/s

Example 2: Third-Order Polynomial

g(t) = 2t3 − 5t2 + 3t − 4

dg

dt
= 6t2 − 10t + 3

The derivative of t3 is 3t2, and of t2 is 2t.
The slope of a cubic function varies quadratically with t.
For physics: if g(t) is position, then dg

dt
is velocity, changing nonlinearly in time.

E.g. if g(t) is the displacement, then the velocity at t = 2s is v(t) = 7m/s
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Rules of Integration for Polynomials

The integral (accumulated area) increases the power by one and divides by the new
exponent (it’s the opposite of differentiation):∫

tn dt =
tn+1

n + 1
+ C

⇒
∫

f (t) dt = a0t +
a1t2

2
+

a2t3

3
+ · · ·+

antn+1

n + 1
+ C

Example:

function: f (t) = 3t2 + 2t + 1

derivative: f ′(t) = 6t + 2

integral:

∫
f (t) dt = t3 + t2 + t + C

Laszlo Bardoczi Physics 3A: Physics for the Life Sciences 10 / 22



Rules of Integration for Polynomials

The definite integral gives the accumulated change (area) between two times:

∫ t2

t1

tn dt =
t n+1
2 − t n+1

1

n + 1

For a general polynomial:

f (t) = a0 + a1t + a2t
2 + · · ·+ ant

n

⇒
∫ t2

t1

f (t) dt = a0(t2 − t1) +
a1

2
(t22 − t21 ) +

a2

3
(t32 − t31 ) + · · ·+

an

n + 1
(t n+1

2 − t n+1
1 )
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Example: Integrating Velocity to Find Displacement

Suppose the velocity of an object changes with time as (same as on previous slide):

v(t) = 3t2 + 2t + 1 [m/s]

To find how far the object travels starting at t = 0, we integrate velocity over time:

x(t) =

∫ t

0
v(t) dt = t3 + t2 + t − (0 + 0 + 0)

Then, for example:

x(1) = 13 + 12 + 1 = 3 m

x(2) = 23 + 22 + 2 = 14 m

x(3) = 33 + 32 + 3 = 39 m

The displacement between t = 1 s and t = 3 s is:

∆x = x(3)− x(1) = 39− 3 = 36 m

Interpretation: The area under the v(t) curve between 1 s and 3 s equals 36 m — this is the
total distance traveled during that interval.
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Differentiation and Integration are Inverse Operations

Consider the polynomial:
f (t) = 3t2 + 2t + 1

Its integral is: ∫
f (t) dt = t3 + t2 + t + C

Differentiating the result gives back the original function:

d

dt

(
t3 + t2 + t + C

)
= 3t2 + 2t + 1 = f (t)

Conclusion: Differentiation and integration are inverse operations. The derivative of an
integral returns the original function, and the integral of a derivative returns the original
function (up to a constant).
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Projectile Motion: Ball Kicked at an Angle

A soccer ball is kicked with initial speed v0 at an angle θ above the horizontal.

Questions we will answer:

What is the total time the ball remains in the air?
How far from the starting point will the ball land?
What is the maximum height the ball reaches before descending?
What is the final velocity when the ball hits the ground?
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Projectile Motion: Ball Kicked at an Angle

Motion will take place in a plane mapped out by the initial velocity vector and the
acceleration vector (due to gravity). I.e. the motion is in 2 dimensions.

Define the origin to be the starting point. Measure the angle θ relative to the x-axis.

Horizontal and vertical components of velocity at t=0:

v0x = v0 cos θ, v0y = v0 sin θ

Gravity is only affecting vy . Thus, the displacement as a function of time:

x(t) = vx0t,

y(t) = vy0t +
1

2
at2 = vy0t −

1

2
gt2

In the above we used that the acceleration is a = −g . Numerically, g = 9.81m/s2.
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Projectile Motion: Ball Kicked at an Angle

The time of flight: can be calculated by setting y(t)=0. I.e. we look for the time at which
the y coordinate is zero, i.e. the ball is at the ground level.

y(t) = vy0t −
1

2
gt2 = 0

This is is quadratic in t, thus there will be two solutions (tstart and tflight).
A quick way to solve it is to first rewrite the equation as:

y(t) = (vy0 −
1

2
gt)t = 0

A product is zero if either one of the factors are zero. This gives t=0 as a solution (this is
trivial) and

(vy0 −
1

2
gt) = 0 −→ tflight =

2vy0

g

Maximum height occurs at mid-flight. So evaluate y(t) at t = tflight/2:

ymax =
v2
y0

2g

Horizontal range:

xfinal = vx0 tflight −→ xfinal =
2vx0vy0

g
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Projectile Motion: Ball Kicked at an Angle

Trajectory shape (eliminate time):

We have the x(t) and y(t) functions:

x(t) = vx0t,

y(t) = vy0t +
1

2
at2 = vy0t −

1

2
gt2

To map out the trajectory we need y(x)! So, we need to eliminate t from x(t) and y(t) and
express y as a function of x .

The simplest way to do it is to express t from x(t) and then plug that into y(t).

x(t) = vx0t −→ t = x(t)/vx0

Now plug this into:

y(t) = vy0t −
1

2
gt2

We find:

y(x) =
vy0

vx0
x −

gx2

2v2
x0

The motion is a parabola.

Like: f (x) = b + 0 + b1x + b2x2 with b0 = 0 , b1 =
vy0
vx0

and b2 = − g

2v2x0
.
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Projectile Motion: Ball Kicked at an Angle

The final velocity?

vx will always be the same, since there is no acceleration in the x-direction.

vy can be found by plugging tflight =
2vy0
g

into vy (t) = vy0 − gt

vy (tflight) = vy0 − g

(
2vy0

g

)
Simplify:

vy (tflight) = vy0 − 2vy0 = −vy0

At the end of the flight, the vertical velocity has the same magnitude but opposite direction
as it was initially.

Since v =
√

v2
x + v2

y , the final velocity is the same as the initial velocity.
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Projectile Motion (L2): Ball Falling Below Initial Ground Level

Assume this time the person kicking the ball is standing on top of a cliff that’s 10m high.

(a) How far will the ball go?

(b) What will be the time of flight?

(c) What will be the final velocity?

Laszlo Bardoczi Physics 3A: Physics for the Life Sciences 19 / 22



Projectile Motion (L2): Ball Falling Below Initial Ground Level

(a) How far will the ball go?

The solution hinges on the fact that the trajectory will be exactly the same!

y(x) =
vy0

vx0
x −

gx2

2v2
x0

The above relationship connects yend and xend too, since it’s is on the trajectory:

yend =
vy0

vx0
xend −

gx2end
2v2

x0

⇒ −
g

2v2
x0

x2end +
vy0

vx0
xend − yend = 0

This is a quadratic equation for x . For a quadratic equation ax2 + bx + c = 0, the solutions
are

x1,2 =
−b ±

√
b2 − 4ac

2a
.
We only care about the positive solution, since the ball is flying in the positive x-direction, so:

xend =
vx0

g

(
vy0 +

√
v2
y0 − 2gyend

)
Check: when yend = 0 (like in the previous example), then xend =

2vx0vy0
g
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Projectile Motion (L2): Ball Falling Below Initial Ground Level

(b) What will be the time of flight?

We can just plug either yend into y(t) or xend into x(t) and solve.

Let’s work in the y-direction:

yend = vy0tfight −
1

2
gt2flight

This is a quadratic equation for t, and (again) we only care about the positive root:

tflight =
vy0 +

√
v2
y0 − 2gyend

g

Check: if yend = 0, then tflight =
2vy0
g

, as it should.
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Projectile Motion (L2): Ball Falling Below Initial Ground Level

(c) What will be the final velocity?

vx will always be the same, since there is no acceleration in the x-direction.

vy can be found by plugging tflight into vy (t) = vy0 − gt

vy = −
√

v2
y0 − 2gyend

Check: if yend = 0 we get vy = −vy0, as we should.

The total velocity is then v =
√

v2
x0 + v2

y0 − 2gyend

Notice:

If yend < 0, the ball lands below its starting point and thus strikes the ground with a
higher speed.
If yend > 0, the ball lands above its starting point (for example, when kicked up onto a
cliff) and therefore hits with a lower speed.
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