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What is Root Mean Square (RMS) and Why We Use It?

1. Molecule Jiggling (Brownian Motion) - A protein or drug molecule in water moves randomly:
forward, backward, left, right. Average displacement = 0 (it cancels out). Average doesn’t tell us
the typical distance travelled.

2. Nerve Signals (Oscillating Currents) - A neuron’s voltage signal fluctuates above and below
zero. Average could look like zero.

3. Breathing In and Out - Lung volume goes up (inhalation) and down (exhalation).
Average change could be near zero if you breathe symmetrically.

4. Heartbeat (ECG Signal) - The ECG trace oscillates above and below baseline.
Average ≈ 0, but we clearly feel the heartbeat!

So, we need something that quantifies the typical changes!

RMS = take square → take mean → take square root
Squaring gets rid of negatives.
Taking the mean tells us the typical size.
Square root brings the size back to the original units.

e.g. for neuron voltage: Vrms =
√
⟨V 2⟩, or protein travel distance: rrms =

√
⟨r2⟩

The RMS displacement tells you the typical distance the protein wandered away from where it
started.
The RMS voltage tells you the real “strength” of the signal.
The RMS change of lung volume tells you the typical size of your breathing motion.
The RMS value of ECG measures the “power” of the heart’s electrical activity.
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Brownian Motion

1827 – Robert Brown (Botanist) While looking at pollen grains under a microscope, he
noticed they jittered randomly in water. At first, he thought it might be due to “life forces.”
Later, he tested dust and sand particles and saw the same effect — so it wasn’t just biology.

Mid–1800s – Hypotheses Some scientists suggested it was due to currents in the water or
“internal vibrations” of the particles. Others speculated invisible molecules in motion might
be responsible — but no one could prove it.

1905 – Albert Einstein Published a famous paper giving a statistical theory of Brownian
motion. He showed that the random motion of particles could be explained as collisions with
fast-moving water molecules. Importantly, he derived equations linking the diffusion of
particles to Avogadro’s number.

Importance in Biology: Diffusion is vital in biology because it’s the passive movement of
molecules (like oxygen, carbon dioxide, water, and small nutrients) across cell membranes
and throughout the body, ensuring gas exchange, waste removal, and nutrient distribution
without the cell expending energy.
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Diffusion — The Core Idea

Particles jiggle randomly because of random collisions between them.

Clumps (high concentration) naturally spread into emptier regions (low concentration)
because fewer particles come toward the high concentration than the other way around.

No stirring is needed—the mixing emerges from countless random steps.

Occurs in gases, liquids, and even solids (e.g., dye in water, smells in air, ions across
membranes).

Mathematically, one can model diffusion with a random walk (random steps)

Summary: Random motion smooths out concentration differences over time.
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2D Diffusion: Snapshots and Theory Check

Random walk of N atoms in m = 2 dimensions with step size d , after n steps:

Snapshots and distributions at equally spaced times

The root mean square (RMS) and the mean squared displacement (MSD) cloud radius:

rrms = d
√
mn and r2rms = d2mn
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Applied Problem: Ciprofloxacin Diffusion

Ciprofloxacin is an antibiotic that blocks bacterial DNA replication and transcription. After
crossing the cell membrane, it diffuses rapidly through the cytoplasm to the nucleoid, where it
binds DNA enzymes, prevents proper DNA synthesis and ultimately kills the bacterium.

A typical bacterium has diameter ∼ 2µm, and they are in 3 dimensions (m = 3).

Assume that the effective step size of diffusion in cytoplasm: d = 0.3 nm.

Assume that the collision (step) time: τ ≈ 1.5× 10−8 s.

Question:
1 How many steps are needed to reach the DNA (for the RMS to be 1 µm)?
2 How long does it take for ciprofloxacin to arrive?

Laszlo Bardoczi Physics 3A: Physics for the Life Sciences
Chapter 1: Diffusion and Proportional Reasoning

6/17



Solution: Ciprofloxacin Diffusion

In 3D, the RMS displacement is:
rrms = d

√
mn

With m = 3, d = 0.3 nm, and RMS displacement 1µm = 1000 nm:

1000 = 0.3
√
3n

Solve for the number of steps (n):

√
3n ≈ 3333 ⇒ n ≈ 3.7× 106

Time estimate (with τ = 1.5× 10−8 s):

t = n · τ ≈ 3.7× 106 × 1.5× 10−8 s ≈ 5.6× 10−2 s ≈ 56ms

With realistic cytoplasmic diffusion, antibiotics reach DNA in tens of milliseconds
— rapid compared to cellular processes.
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Example: Random Walk Diffusion

Problem. After 103, 105, and 109 steps, what fraction of the maximum straight-line distance
does a diffusing particle typically reach?

Setup. If every step pointed in the same direction, the particle would move

xmax = nd ,

where n is the number of steps and d is the step length. In a random walk, the average
displacement grows more slowly, as we already know:

xdiff =
√
n d .

Calculation. The ratio is
xdiff

xmax
=

√
n d

nd
=

1
√
n
.

For the chosen step counts:

xdiff

xmax
=


10−1.5, n = 103,

10−2.5, n = 105,

10−4.5, n = 109.

Interpretation. Even though the particle takes many steps, its typical displacement is tiny
compared with the maximum straight-line distance. Random motion makes spreading very slow:
after 109 steps, the diffusive distance is only about one thirty-thousandth of the maximum
possible.
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Diffusion Coefficient D

In biology diffusion is how molecules like oxygen, glucose, or drugs spread inside cells and
tissues. We know that rrms =

√
nd , but we can’t measure n nor d easily - because we can’t

see them in sufficient detail. We can only measure rrms and t directly.

We want a single number that absorbs the microscopic details into a single effective
coefficient and relates:

rrms ←→ t

so we can predict how far molecules travel in a given time. That’s what matters!

To capture this, we define the diffusion coefficient:

D = 1
2
vd

Use n = t/∆t and v = d/∆t:

rrms = d
√
mn = d

√
m t

∆t
=

√
md2 t

∆t
=

√
mdt d

∆t
=
√
mvd t

With this definition:

rrms =
√
2mDt

Take-home: D packages all microscopic motion into one effective constant that links
measurable quantities (distance and time).
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Example: Diffusion Times

Medical context: Molecules like oxygen or glucose spread by diffusion. Works very fast over
single-cell distances, but far too slow over tissue or organ scales.

Model:

rrms =
√
6Dt ⇒ t =

r2rms

6D

Assume D ≈ 1× 10−9 m2/s for oxygen in fluid.

Across a cell: rrms = 20µm = 2× 10−5 m

t ≈
(2× 10−5)2

6(1× 10−9)
≈ 0.07 s

Across a small organ: rrms = 5 cm = 0.05m

t ≈
(0.05)2

6(1× 10−9)
≈ 4× 105 s ≈ 5 days

Conclusion: Diffusion alone is sufficient within cells or over a few microns, but is much too
slow across whole organs — hence the need for circulatory systems.
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Proportionality and Ratio Reasoning

Linear proportionality: (orange line)

y ∝ x ⇒ ⇒ y = Cx

C is the proportionality constant (slope).
Graph is a straight line through the origin.

Ratio reasoning: If y = Cx , then ratios
cancel C :

y2

y1
=

Cx2

Cx1
⇒

y2

y1
=

x2

x1

Doubling x doubles y . Halving x halves y ,
etc.

Examples:
Oxygen uptake ∝ surface area of alveoli in lungs.
Diffusion time ∝ distance2 for molecules crossing cell membranes.
Mass (m) ∝ volume (V ): m = ρV . Surface area (A) ∝ radius2: A = 4πr2, etc.

Important: Proportionality is stronger than a general linear relation (y = Cx + B, blue line).
Ratio reasoning works only if B = 0:

y2

y1
=

Cx2 + B

Cx1 + B
̸=

x2

x1
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Why Ratio Reasoning Does Not Apply To General Linear Relation

Neuron Firing Rate

Neurons need a threshold input current before firing.

Above threshold, firing rate (ν) grows roughly linearly with
input current (I ):

ν = C · I + B

Doubling I does not double ν, because B shifts the ratio.

Read two clear points from the nearly linear region (e.g.,
around I ∈ [0.5, 2.0]). For instance, from the graph:

(I1, ν1) ≈ (0.5, 30), (I2, ν2) ≈ (2.0, 100).

Between these points, I increases by a factor of 4. If the
relation were strictly proportional, the firing rate would
rise from about 30 Hz to 120 Hz. In reality, it only reaches
about 100 Hz.

Figure: More at: Asynchronous States
and the Emergence of Synchrony in
Large Networks of Interacting
Excitatory and Inhibitory Neurons,
DOI:10.1162/089976603321043685

Compute slope C and intercept B:

C =
ν2 − ν1

I2 − I1
=

100− 30

2.0− 0.5
=

70

1.5
≈ 46.7

Hz

µA/cm2

B = ν1 − C I1 = 30− C(0.5) ≈ 30− 23.3 ≈ 6.7 Hz.
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Q&A 1. What drives diffusion, and why does it always spread from high to
low concentration without external help?

Molecules are constantly jiggling because of thermal energy (collisions with other molecules).

In a high-concentration region, there are more molecules bouncing out than bouncing in.

This imbalance leads to a net flow toward the low-concentration side.

No stirring or pumping is needed — diffusion is powered by randomness.

In biology: this explains why oxygen naturally moves into cells where it is lower, and CO2

leaves where it is higher.

Takeaway: Diffusion is driven by random molecular motion, and “high to low” just means
probability favors leveling things out.
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Q & A 2. How does the math of random walks explain why diffusion is so
much slower than straight-line motion, and why does time scale with
distance squared?

In a straight line: distance ∝ steps (linear).

In a random walk: steps partly cancel each other, so net distance ∝
√
steps.

If each step takes time τ , then the number of steps is n = t/τ ⇒ displacement grows with√
t.

Rearranged:
t ∝ (distance)2

Biological meaning: crossing 20µm (a cell) is fast (fractions of a second), but crossing 5 cm
(an organ) would take days.

Takeaway: Random wandering is inefficient — distance grows with the square root of time,
making diffusion painfully slow over large distances.
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Q & A 3. What is the diffusion coefficient (D), how is it measured, and
why is it more useful than step size and time in biology?

Definition: D condenses microscopic motion (step size & step time) into a single constant.

Relation:
rrms =

√
2mDt

Measurement: We measure D experimentally by observing how far molecules spread in a
known time (e.g., fluorescence microscopy, tracer molecules).

Why useful: We cannot see individual molecular steps, but we can measure how far a dye or
drug cloud spreads.

Typical values: Oxygen in water ≈ 10−9 m2/s.

Takeaway: D is the practical “speed of spreading” number for molecules, letting us predict
transport inside cells and tissues.
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Q & A 4. Why is diffusion fast enough for single cells but far too slow
across organs, and how do organisms solve this problem?

Inside a cell (tens of µm): diffusion is quick (fractions of a second).

Across an organ (cm): diffusion would take days.

Evolutionary solution: circulatory systems and lungs move materials by bulk flow, then
diffusion takes over only across microscopic distances.

Example: Oxygen diffuses from alveoli → blood (microns), but blood circulation handles
cm-level transport.

Takeaway: Diffusion is nature’s solution for micrometer scales, but living systems need pumps,
blood, and lungs to cover macroscopic distances.
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Q & A 5. When can we use proportional reasoning in biology and medicine,
and why does it sometimes fail (like in neuron firing)?

Proportionality (y ∝ x): doubling x doubles y . Works when the relation passes through the
origin (no offset).

Examples where it works:
Diffusion time ∝ distance2

Drug dose ∝ body mass

Failure case: If there is a threshold or offset (y = Cx + B), doubling does not hold.

Example: Neurons need a minimum current before firing; above threshold, firing rate grows
but not strictly proportionally.

In medicine: dosing by body mass works (proportional), but neuron firing or enzyme
activation often has thresholds (non-proportional).

Takeaway: Ratio reasoning is powerful but only works when the relationship is truly proportional
— biology often adds offsets or thresholds.
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