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Problem 1: Calcium Diffusion in a Neuron

When a synapse is activated, Ca2+ ions enter a neuron and then diffuse through the cytoplasm.
Assume: Step size in cytoplasm: d = 0.30 nm. Step (collision) time: τ = 1.0×10−8 s. Motion is 3D (m = 3).

(a) How many steps n are needed for the RMS displacement to reach rrms = 2.0µm (membrane → nearby
target)?

(b) How long does that diffusion take?

(c) If instead the Ca2+ ion needed to reach a target 2.0mm away (small tissue-scale path along a dendrite),
how long would it take? Express your answer in days.

Worked Solution

The key relation for a 3D random walk is

rrms = d
√
mn =⇒ n =

r2rms

md2

and the total diffusion time is t = nτ .

Given (SI units)

d = 3.0× 10−10 m, τ = 1.0× 10−8 s, m = 3

(a) Steps to reach rrms = 2.0 µm
Convert distance:

rrms = 2.0× 10−6 m

n =
(2.0× 10−6)2

3(3.0× 10−10)2
=

4.0× 10−12

2.7× 10−19
≈ 1.48× 107

(b) Time for 2.0 µm
t = nτ = (1.48× 107)(1.0× 10−8 s) = 1.48× 10−1 s ≈ 0.15 s

Interpretation: That’s fast on cellular timescales—consistent with rapid synaptic signaling.

(c) Time for 2.0mm

Convert distance:
rrms = 2.0× 10−3 m

n =
(2.0× 10−3)2

3(3.0× 10−10)2
=

4.0× 10−6

2.7× 10−19
≈ 1.48× 1013

t = nτ = (1.48× 1013)(1.0× 10−8 s) = 1.48× 105 s

Convert to days:
1.48× 105 s

86400 s/day
≈ 1.7 days

Interpretation: Diffusion is excellent over microns but painfully slow over millimeters—exactly why cells
and tissues rely on directed transport and circulation for longer distances.
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Problem: Blood Cells & Surface Area (Proportional Reasoning)

Whole blood volume for an adult is about 5.0L. Suppose the hematocrit (fraction of blood volume occupied
by red blood cells) is 45%. Model each red blood cell (RBC) as a sphere of diameter 8.0 µm.

1. Estimate the total number of RBCs in circulation.

2. What is the total surface area of all RBCs combined?

3. If you lined up all RBCs in single file, touching each other, how long would the line be?

Worked Solution

Given/Model:

Vblood = 5.0 L = 5.0× 10−3 m3,

Hematocrit = 0.45 ⇒ VRBC,total = 0.45Vblood = 2.25× 10−3 m3,

d = 8.0 µm = 8.0× 10−6 m, r = 4.0× 10−6 m,

V =
4

3
πr3, A = 4πr2.

(a) Total number of RBCs

Volume of one RBC:

Vcell =
4

3
πr3 =

4

3
π(4.0× 10−6)3

=
4

3
π(64× 10−18) ≈ 2.68× 10−16 m3.

Number of RBCs:

N =
VRBC,total

Vcell
=

2.25× 10−3

2.68× 10−16
≈ 8.4× 1012 cells.

(b) Total surface area

Area of one RBC:

Acell = 4πr2 = 4π(4.0× 10−6)2 = 4π(16× 10−12) ≈ 2.01× 10−10 m2.

Total surface area:

Atotal = N Acell ≈ (8.4× 1012)(2.01× 10−10) ≈ 1.7× 103 m2.

(This is roughly the area of several tennis courts, illustrating how massive surface area supports gas
exchange—similar to the lung alveoli problem.)

(c) End-to-end length

If spheres just touch, each contributes one diameter d to the line length:

L = N d = (8.4× 1012)(8.0× 10−6 m) ≈ 6.7× 107 m ≈ 6.7× 104 km.
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Problem: The Courier’s Pace

A medical courier jogs specimens between hospital buildings. She times 200m in 36 s at a steady pace
(assume constant speed; use ratios—no need to compute her speed explicitly).

(a) How long would it take her to jog 800m at the same pace?

(b) How long would it take her to jog 1.00 km at the same pace?

(c) She keeps this pace for 30min. What speed must she run for the next 30min so that her average
speed over the full hour is 6.8m s−1?

Worked Solution

For constant speed, time is directly proportional to distance:

t2
t1

=
d2
d1

Given

d1 = 200m, t1 = 36 s

(a) Time for 800m

t800 = t1 ·
800

200
= 36× 4 = 144 s

(b) Time for 1.00 km

t1000 = t1 ·
1000

200
= 36× 5 = 180 s = 3.00min

(c) Required second-half speed for average 6.8m s−1

First 30 min (1800 s) at this pace:

v1 =
d1
t1

=
200

36
= 5.56m s−1

d1 = v1(1800) = (5.56)(1800) = 1.00× 104 m

Total distance needed for a 1-hour average of 6.8m s−1:

dtarget = (6.8)(3600) = 2.448× 104 m

d2 = dtarget − d1 = 24480− 10000 = 1.448× 104 m

Required speed in second 30 min:

v2 =
d2

1800
=

14480

1800
= 8.04m s−1

Interpretation: To raise her average speed from 5.56m s−1 to 6.8m s−1, she must run significantly faster
during the second half—just as a marathon runner must pick up the pace late in a race to meet an overall
time goal.
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Problem: Kangaroo-Rat Escape Jump (Projectile Motion)

A desert kangaroo rat makes a powerful escape jump. It travels a horizontal distance of R = 4.8m and reaches
a maximum vertical height of h = 1.2m before landing back at the same ground level. Take g = 9.8m s−2.

(a) What is the rat’s takeoff speed v0?

(b) At what launch angle θ (above the horizontal) does it take off?

(c) How long is the rat in the air (time of flight T )?

Worked Solution

We use standard projectile relations for same-height launch and landing. At maximum height, the vertical
speed is zero and

h =
v2y
2g

so vy =
√

2gh.

The total flight time is T =
2vy
g

, the horizontal speed is vx =
R

T
, and

v0 =
√

v2x + v2y, θ = tan−1

(
vy
vx

)
.

1) Vertical launch component from max height

vy =
√
2gh =

√
2(9.8)(1.2) =

√
23.52 ≈ 4.85m s−1.

2) Time to peak and total time of flight

t↑ =
vy
g

=
4.85

9.8
≈ 0.495 s, T = 2t↑ ≈ 0.989 s.

3) Horizontal component from range

vx =
R

T
=

4.8

0.989
≈ 4.85m s−1.

4) Takeoff speed and angle

v0 =
√

v2x + v2y =
√
(4.85)2 + (4.85)2 = 4.85

√
2 ≈ 6.86m s−1.

θ = tan−1

(
vy
vx

)
= tan−1

(
4.85

4.85

)
≈ 45◦.

Life Science Connection

Estimating v0 and θ from trajectory data allows biologists to infer muscle performance and power output
from high-speed videos of animal escapes. This is valuable for studying predator–prey dynamics and the
biomechanics of locomotion.
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Tracer Bolus in a Straight Microchannel

In a microfluidic experiment, a fluorescent tracer bolus moves along a straight microchannel. Its velocity
along the x-axis is modeled (for t ≥ 0) by

v(t) = −0.3 t2 + 1.8 t+ 0.6 (m s−1),

where t is in seconds. The tracer begins at the channel inlet at t = 0, so x(0) = 0.

(a) Find the position function x(t).

(b) Find the acceleration function a(t).

(c) Compute the displacement and the distance traveled for 0 ≤ t ≤ 6 s.

(d) At what time is the tracer’s instantaneous velocity maximal, and what is that value?

(e) Find the average velocity on 0 ≤ t ≤ 6 s.

(f) Evaluate x(4 s).

Worked Solution

(a) Position from integrating velocity

x(t) =

∫ t

0

v(τ) dτ + x(0) =

∫ t

0

(
− 0.3 τ2 + 1.8 τ + 0.6

)
dτ.

Integrating term by term:

x(t) =
(
−0.1 τ3 + 0.9 τ2 + 0.6 τ

) ∣∣∣τ=t

τ=0
= −0.1 t3 + 0.9 t2 + 0.6 t (m).

(b) Acceleration from differentiating velocity

a(t) =
dv

dt
= −0.6 t+ 1.8 (m s−2).

(c) Displacement and distance on [0, 6]

Displacement:
x(6) = −0.1(6)3 + 0.9(6)2 + 0.6(6) = −21.6 + 32.4 + 3.6 = 14.4m.

Since v(t) > 0 for 0 ≤ t ≤ 6, the distance traveled equals the displacement:

∆x = 14.4m, Distance = 14.4m.

(d) Time of maximum velocity

The parabola v(t) has its maximum where a(t) = 0:

−0.6t+ 1.8 = 0 ⇒ t = 3.0 s.

Maximum velocity:

v(3) = −0.3(9) + 1.8(3) + 0.6 = −2.7 + 5.4 + 0.6 = 3.3 m s−1 .

(e) Average velocity on [0, 6]

v̄ =
x(6)− x(0)

6− 0
=

14.4

6
= 2.4 m s−1 .
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(f) Position at t = 4 s

x(4) = −0.1(64) + 0.9(16) + 0.6(4) = −6.4 + 14.4 + 2.4 = 10.4 m .

Final Results (SI units)

x(t) = −0.1 t3 + 0.9 t2 + 0.6 t,

a(t) = −0.6 t+ 1.8,

∆x = 14.4m, Distance = 14.4m,

tmax v = 3.0 s, vmax = 3.3m s−1,

v̄ = 2.4m s−1, x(4) = 10.4m.

Life Science Connection

Polynomial velocity fits like this are often used to describe the motion of tracer particles in microfluidic or
vascular flows. Integrating gives position (how far material has moved), while differentiating gives accelera-
tion, linked to the driving pressure or pulsation of the flow—critical information in studying circulation or
targeted drug delivery.
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