# Physics 3A – Midterm 3 Review

Prof. Laszlo Bardoczi

# Torque and Rotational Dynamics

$$\tau = rF \sin \theta$$

#### Concepts:

- Torque measures how effectively a force causes rotation.
- Depends on lever arm r and angle  $\theta$  between r and F. In most of our applications, the arm and the force are perpendicular to each other, making  $\theta = 90^{\circ}$  and hence  $\sin(\theta) = 1$ , leaving  $\tau = rF$

$$\tau = I\alpha$$

#### Concepts:

- Rotational version of F = ma.
- *I* (moment of inertia) = resistance to rotational acceleration.

# Torque Applications from Lecture Slides

Child pushing a merry-go-round

Tangential force creates torque:  $\tau = FR$ . (p3a\_lec\_7.2.pdf, slide 7)

Two children on a seesaw

Opposing torques:  $\tau_{\text{net}} = m_2 g l_2 - m_1 g l_1$ . (p3a\_lec\_7.2.pdf, slide 8)

Seesaw imbalance determining rotation direction

Compare left vs right torques. (p3a\_lec\_7.2.pdf, slide 16)

Rod released from the horizontal

Gravity produces torque:  $\tau = mg\frac{L}{2}$ . (p3a\_lec\_7.2.pdf, slide 10)

Bucket pulling a rotating disk

Rope tension causes torque:  $\tau = TR$ . (p3a\_lec\_7.2.pdf, slide 12)

Yo-yo unwinding while falling

Torque from tension drives rotation:  $TR = I\alpha$ . (p3a\_lec\_7.2.pdf, slide 15)

Rod-spool system driven by falling mass
 Rope tension applies torque on the spool to rotate the system.

(p3a\_lec\_7.2.pdf, slide 13)

# Circular Motion & Angular Quantities (1/2)

#### **Period and Frequency**

$$f=\frac{1}{T}$$

- Period T = time for one revolution.
- Frequency f = number of revolutions per second.

## Speed in Circular Motion

$$v = \frac{2\pi r}{T} = 2\pi r f$$

- Speed depends on radius and rate of rotation.
- Example: edge speed on a centrifuge rotor.



# Circular Motion & Angular Quantities (2/2)

### **Angular Speed**

$$\omega = 2\pi f$$

- Angular speed: radians per second.
- Links linear motion to rotational motion.

## **Angular Kinematics**

$$\phi = \omega t$$
 and  $\omega = {\rm const.}$  (uniform rotation)  $\phi = \omega_0 t + {1\over 2} \alpha t^2$  (accelerating rotation)  $\omega = \omega_0 + \alpha t$  (accelerating rotation)

Rotational analogs of constant-acceleration equations.

# Examples from Lecture Slides (1/2)

### Period & Frequency

- Car on a circular track, London Eye, spinning bicycle wheel (p3a\_lec\_7.1.pdf, slide 1)
- Table saw blade (compute T and f) (p3a\_lec\_7.1.pdf, slide 3)
- Quasar carnival ride finding rotation period (p3a\_lec\_7.1.pdf, slide 10)

## **Speed in Circular Motion (** $v = 2\pi rf$ **)**

- Table saw blade speed of a tooth at the rim (p3a\_lec\_7.1.pdf, slide 3)
- Quasar carnival ride riders' speed using  $v = \sqrt{ar}$  (p3a\_lec\_7.1.pdf, slide 10)

## Angular Speed ( $\omega = 2\pi f$ )

- Circular motion coordinates:  $x(t) = r\cos(\omega t)$ ,  $y(t) = r\sin(\omega t)$  (p3a\_lec\_7.1.pdf, slide 8)
- Table saw blade rpm  $\rightarrow$  frequency  $\rightarrow$  angular speed (p3a\_lec\_7.1.pdf, slide 3)

# Examples from Lecture Slides (2/2)

## Angular Kinematics ( $\omega = \omega_0 + \alpha t$ , $\phi = \omega t$ , ...)

- Merry-go-round pushed by a child torque  $\to \alpha \to \text{final } \omega$  (p3a\_lec\_7.2.pdf, slide 7)
- Rod released from horizontal gravity torque gives angular acceleration (p3a\_lec\_7.2.pdf, slide 10)
- Yoyo unwinding tension creates  $\alpha$  leading to changing  $\omega(t)$  (p3a\_lec\_7.2.pdf, slide 15)

# What is the Centripetal Force?

The centripetal force is not a new or mystical force.

It is simply the **net force that makes an object follow a circular path**. Even if the **speed stays constant**, the velocity is changing direction, and a change in velocity requires a force. The centripetal force is the inward force that provides the needed acceleration

$$a=\frac{v^2}{r}.$$

Which real force acts as the centripetal force depends on the situation:

- **Tension** (Tarzan swinging on a vine)
- Normal force (rollercoaster at the bottom of a loop)
- **Gravity** (rollercoaster at the top of a loop)
- Friction (car turning on a road)

Key idea: The centripetal force is the net inward force from the free-body diagram. It changes the direction of the velocity (not its magnitude) and always points toward the center of the circular path.

## Moments of Inertia

### Concepts:

- Rotational inertia depends on mass distribution.
- More mass farther from the axis  $\rightarrow$  larger I.
- Moments of inertia are listed on the equation sheet.
   You just need to recognize which one is which.

## Momentum Basics

$$p = mv$$
 and  $\frac{dp}{dt} = F(t)$ 

- Momentum measures "quantity of motion."
- Force changes momentum over time.

$$p_f - p_i = \int F(t)dt = J$$

- Impulse (J) = change in momentum.
- ullet Longer contact time o smaller force needed (e.g., padded shoes).

$$P_{\mathrm{tot}} = p_1 + p_2$$
 and  $\Delta p_1 + \Delta p_2 = 0$ 

Internal forces in an isolated system cancel due to Newton's third law
 → total momentum stays constant.

# Examples from Lecture Slides: Momentum Concepts

#### Momentum

- Golf club striking a ball large, short force changes momentum (p3a\_lec\_8.1.pdf, slide 1)
- Force—time graph during a collision momentum change equals area under F(t) (p3a\_lec\_8.1.pdf, slide 5)

## **Impulse**

- Collision force modeled as a triangle computing  $F_{\text{max}}$  from impulse (p3a\_lec\_8.1.pdf, slide 11)
- Falling object impact impulse relates average impact force and fall height (p3a\_lec\_8.1.pdf, slide 13)

#### Momentum of a System

ullet Two blocks stuck together move with same v (p3a\_lec\_8.1.pdf, slide 14)

# Momentum Conservation ( $\Delta p_1 + \Delta p_2 = 0$ )

- Collision of two balls Newton's 3rd law ⇒ equal and opposite momentum change (p3a\_lec\_8.1.pdf, slide 15)
- Example: Two colliding train cars stick together (p3a\_lec\_8.1.pdf, slide

# Energy

- Kinetic energy (K) measures the energy of motion; potential energies
   (U) store energy based on position (height or spring compression).
- Total mechanical energy is conserved when no non-conservative forces (friction, drag) act on the system.
- Changes in energy tell you what the system can do—how fast it will move or how high it can rise.

$$K = \frac{1}{2}mv^{2}$$

$$U = mgh$$

$$U = \frac{1}{2}kx^{2}$$

$$E = K + U$$

## Work

- Work is the process of transferring energy into or out of a system by applying a force over a distance.
- Only the component of force along the direction of motion contributes to work (recall properties of the dot product).
- Positive work increases the system's mechanical energy; negative work (like friction) removes mechanical energy and turns it into heat (energy, in general, is conserved).

$$W = Fx$$

$$W = \int F(x) dx$$

$$W = \Delta K$$

$$W = \Delta E$$

## Power

- Power measures how fast work is done or how quickly energy is transferred.
- A large force doesn't guarantee high power—both force and speed matter.
- Human muscles have a maximum power output, which limits sprint speed and lifting performance.

$$P = \frac{dW}{dt} = Fv$$

# Examples from Lecture Slides: Energy Concepts (1/2)

# Kinetic and Potential Energy ( $K = \frac{1}{2}mv^2$ , U = mgh, $U = \frac{1}{2}kx^2$ )

- Free—falling ball: gravitational potential → kinetic (p3a\_lec\_10.1.pdf, slide 11)
- Block sliding down frictionless slope conversion of  $U_g$  to K (p3a\_lec\_10.1.pdf, slide 11–12)
- Hooke's law spring compression stored spring potential energy (p3a\_lec\_10.1.pdf, slide 6)

## Total Mechanical Energy (E = K + U)

- Conservative systems: ball in free fall, mass on a spring energy exchanges between K and U (p3a\_lec\_10.1.pdf, slide 10)
- Examples list: free fall, frictionless slope, simple harmonic oscillators (p3a\_lec\_10.1.pdf, slide 10)

# Examples from Lecture Slides: Energy Concepts (2/2)

Work (
$$W = Fx$$
,  $W = \int F(x)dx$ ,  $W = \Delta K$ ,  $W = \Delta E$ )

- Work by gravity during vertical motion (p3a\_lec\_10.1.pdf, slide 6)
- Work done by friction (negative work, energy lost to heat)
   (p3a\_lec\_10.1.pdf, slide 6)
- Work done compressing a spring (requires integral) (p3a\_lec\_10.1.pdf, slide 6)
- Work–energy theorem ( $W = \Delta K$ ) derived from  $\int v \, dp$  (p3a\_lec\_10.1.pdf, slide 7)

Power 
$$(P = dW/dt = Fv)$$

 Power in everyday activities: muscles doing work at a rate (see textbook)